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ON THE FRATTINI NORMAL EMBEDDABILITY 
OF PRODUCTS OF p-GROUPS 

BY 

W .  O.  A L L T O P  

ABSTRACT 

If Hj is a finite non-abelian p-group with center of order p, for 1 _--- j =< R, then 
the direct product of the Hj does not occur as a normal subgroup contained in 
the Frattini subgroup of any finite p-group. If the Frattini subgroup qb of a finite 
p-group G is cyclic or elementary abelian of order p2, then the centralizer of qb 
in G properly contains ~.  Non-embeddability properties of products of groups 
of order 16 are established. 

I. Introduction 

Only finite groups  will be considered.  A group  H will be called an FN 

subgroup (Frattini normal  subgroup)  of G provided H is normal  in G and 

conta ined in the Frattini subgroup of G.  A n  F N E  group  (Frattini normal  

embeddab le  group)  is one  which occurs as an FN subgroup of some group.  

Similarly a p - F N E  group (p-Frat t ini  normal  embeddab le  group)  is a g roup  which 

occurs as an FN subgroup of some p-group .  H o b b y  [5] showed that a 

non-abel ian p - g r o u p  with cyclic center  cannot  occur  as the Frattini subgroup of a 

p -group .  Bechtell  [1] deve loped  fundamenta l  theory  relating the Frattini normal  

embeddabi l i ty  of a p -g roup  G to propert ies  of its ~ - i nva r i an t  subgroups,  for g( 

a g roup  of au tomorph i sms  of G.  The  fact that  no non-abel ian p - g r o u p  with 

cyclic center  is a p - F N E  group  is proved in [1], general izing H o b b y ' s  result. A 

non-embeddabi l i ty  condi t ion for p -g roups  was given by Hill and Wright  [4], and 

a bound  on the ni lpotence class of F N E  groups  was established by Hill and 

Parker  [3]. Hill [2] also places a bound  on the exponent  of a p - F N E  group.  Here  

we shall present  another  non-embeddabi l i ty  condit ion (Theorem 6) which yields 

groups which are not p - F N E  groups,  but which satisfy the class bound  of [3] as 

well as the exponent  bound  of [2]. R. W. van der  Waall  [6] proves the 

non-embeddabi l i ty  of those groups  of order  p4 which were not decided in [3]. In 

this paper  we shall also show that for each of the seven non-2 -FNE groups H of 

Received January 21, 1975 

31 



32 w . o .  ALLTOP Israel J. Math. 

order 16, H x H is not a 2-FNE group. The question raised by Bechtell in the 

closing paragraph of [1] is answered negatively for two families of abelian 

p-groups. 

Our notation is standard. ~ ( G )  is the Frattini subgroup of G ; Aut (G) and 

Inn (G) denote the full automorphism group and the inner automorphism group 

of G,  respectively. The ascending central series of a p-group G is denoted by 

1 = Z0 (G) N Z, (G) =< ... "~ Zk (G) = G,  where k is the nilpotence class of G.  

2. The basic theorems 

The first five theorems regarding p-FNE groups follow from the results in [1], 

[2] and [3]. 

THEOREM 1. (Bechtell [1]). If G is a p-FNE group, ~ a p-Sylow subgroup of 

Aut (G), and N is a ~-invariant subgroup of G, then N and G / N  are also p-FNE 

groups. 

THEOREM. 2. (Bechtell [1]). If G is a p-FNE group, then Inn (G) ~ ~ ( ~ )  for 

any p-Sylow subgroup ~ of Aut (G). 

THEOREM 3. (Bechteil [1]). If G is a non-abelian p-group with cyclic center, 

then G is not a p-FNE group. 

THEOaEM 4. (Hill and Parker [3]). If for a p-group G there exists i~  class (G) 

such that (Z, (G): Z~_, (G)) = p, then G is not an FNE group. 

THEOREM 5. (Hill [2]). If G is a p-FNE group of order p", class k, and 

exponent p', then p r divides p,-k 

Essential to the proof of Theorem 6, below, is the following 

LEMMA. Suppose A is an elementary abelian p-group of order p ~ , generated by 

the set E = {el, e2, "",eR}. The number of maximal subgroups of A which are 

disjoint from E is (p - 1) R-~ . 

PROOF. Let A/ be the family of maximal subgroups of A ,  and 2r the 

subfamily of ~ consisting of those maximal subgroups which are disjoint from 

E.  A member M of J /  is determined by an integer sequence s = 

(s~,s2,-.-,sR), 0=<st ~ p - 1 ,  not all st = 0, in the following way. A group 
~t  I u 2 . element a = e ,  e2 . -e~ is in M if and only if s l u , + s 2 u z + - " + s a u R - ~ O  

(modulo p) .  Moreover, if some st -- 0, then ej is in M. Therefore, the sequence s 

determines a member N of N precisely when all si are non-zero. Such an N is 
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uniquely determined by the equivalent sequence s' = (1, ts2, ts3,..., tsR) of non- 

zero integers, where t is the multiplicative inverse of sl (modulo p) .  There are 

( p -  1) R-1 such sequences, so l Y{ = ( p -  1) R-Z . 

Our general non-embeddability result is given in the following 

TIJEOREM 6. Suppose G is isomorphic to the direct product Ha • Hz x ... x FIR, 

where each H i is a non-abelian p-group with center of order p. Then G is not a 

p-FNE group. 

PROOF. We shall write G as the inner product H~H2...FIR of the sub- 

groups Hi, with Z~(Hi )=(e j ) .  Now Z~(G)=(e l , . . . , e~)  is an elementary 

abelian p-group of order pR. As in the Lemma we let N consist of those 

members of At which contain no ej, where At is the family of maximal subgroups 

of Z1 (G) .  Clearly the action of Aut (G) on the family of subgroups of G fixes 

Z1 (G) ,  and decomposes At into orbits. Moreover, N is orbital under this action, 

that is, A; is the union of orbits in At. We prove this fact by showing that for 

every M in At, M is in A; if and only if Z~ ( G / M ) =  Z~ (G)/M. 

Suppose N is in Y,  and ZI ( G / N ) =  W/N.  Clearly Z~ (G)_-< W. If Z~ ( G ) <  

W, then W contains some element w = w~ w2...wn, wj in Hi, such that w is not 

in Z~ (G) .  Thus, for some i, wl is not in Z~ (/-/~). It follows that [hi, w,] ~ 1 for 

some hi in /-/~. However, [hi, wl] = [h,, w ] E N ,  so [h,, wi] is a non-identity 

element of Z~ (Hi). Therefore, Zl(/4,)=< N, and in particular e, is in N, a 

contradiction. We conclude that ZI ( G / N ) =  Z1 (G) /N whenever N is in N.  

Now suppose M is a maximal subgroup of Z~ (G) which is not in X.  M must 
contain some e,, so W_-> Z2(/-/~). Since H, is non-abelian, we have W=> 

Z~ (G) Z2 (Hi) > Z1 (G) .  We have shown that Z~ (G/M)  > Z~ (G)/M whenever 
M i s  not in Y. 

N consists of precisely those maximal subgroups N of Z~(G)  for which 

ZI (G/N)  is of order p. Let ~ be a p-Sylow subgroup of Aut (G) .  From the 

lemma we know that I N I = (P - 1) n-~ ~ 0 (mod p) .  Thus, there exists some N1 

in X which is ~-invariant.  If R = 1, then G is not a p-FNE group by Theorem 

3. If R > 1, then G/N1 is non-abelian with cyclic center. In this case G is not a 

p-FNE group by Theorems 1 and 3. 

COROLLARY 1. If H~, H2,"', FIR are non-abelian p-groups such that for some 

fixed i , (Z i (Hi) :Zi  ~(Hi))=p,l<=j<=R, then H~•215215 is not a 

p-FNE group, 

PROOF. H~- -Hi /Z i - l (Hi )  is non-abelian with cyclic center. Letting G = 

//1 • ... • HR, we have Zi-~(G) = Zi-~(H~)• • Z~_~(HR). Therefore, 
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G / Z H  (G) is isomorphic to H~ x .-. x H ~ ,  and G is not a p -FNE group by 

Theorems 1 and 6. 

In [3] a group of large class is defined to be a p-group of order p n and class 

greater than n/2, n ~ 2. A group of large class is not an FNE group ([3], theorem 

1). It is not difficult to show that if G is a group of large class, then G is 

non-abelian and (Z~ (G): Z~_~ (G))  = p for some i. Thus, we have 

COROLLARY 2. If G is a group of large class, then no finite product of copies of 
G is a p-FNE group. 

Suppose G is a group of large class, and let G ,  be a finite product of at least 

two copies of G.  G ,  is not a p -FNE group even though G ,  satisfies the 

exponent  bound of Theorem 5, and G ,  is not of large class. 

3 .  Products of groups of order 2' 

Every abelian p-group is a p -FNE group. Let C,., D.,, and Q,, denote the 

cyclic, dihedral, and generalized quaternion groups of order  m = 2", respec- 

tively. D8 x (?2 and Qs • C2 both occur as Frattini subgroups of groups of order  

2 6 . In [3] and [6] it is shown that none of the seven remaining non-abelian groups 

of order  2 4 is a 2-FNE group. Here  we discuss the embeddability of the product  

groups H • H ,  where H is of order  2 4 . Since H x H is a 2-FNE group whenever 

H is, we consider only the seven groups which are not 2-FNE groups. In the 

following presentations of these seven groups, only non-identity commutators 

are given. 

P r = ( x , t : x S = t 2 = l , [ x , t ] = x  ") for r = 2 , 4 , 6 ,  

Q I 6 :  (x , t  : x  4=  t 2,t 4 =  1 , [ x , t ]  = x6),  

R = <x,y,z  : x ' =  y2=  z 2= 1 , [y , z ]  = x2), 

T = (x,y : x 4 =  y4= 1,[x, y] = x2), 

U = < x , , x 2 : x ~ = x ' ~ =  ~ 22 =x ,x2>.  (x,x2) = 1, [Xl, X2] 2 2 

The groups P2, P6 ~ D16, and Q16 are  all of class 3. Hence, P2 x P2, P6 x P6, and 

QI6 x Q16 are non-2-FNE groups by Corollary 2. 

We shall treat the four remaining groups separately. The groups R, T, and U 

are isomorphic to those of van der Waall's Theorems 1, 2 and 3, respectively, see 

[6]; but our presentation of U is different. 

The following fact will be applied to P4• P4 and to R • R :  if ix is a 

homomorphism from a group G to the symmetric group $4, then the image of 
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d/,(G) u n d e r / z  is of order  1 or 2. Let M be the kernel o f / x ,  and qb= ~ ( G ) .  

Since qb ( G / M )  >-_ �9 M / M ,  and qb/z is isomorphic to qb M / M ,  it follows that qbtL 

lies in the Frattini subgroup of G/x. But the Frattini subgroup of each subgroup 

of $4 has order  l or 2. Therefore,  qb/z has order 1 or 2. 

Let H = (x,, h, x2, t2) ~ (x~, h) • (x2, h) ---- P4 x P4, with the obvious relations 

holding among the generators.  The fifteen involutions in H generate the 

characteristic subgroup B = (x~, tl, x~, t2). The action of H on B produces four 

conjugacy classes of size 1, four of size 2, and one of size 4. Suppose H is an FN 

subgroup of G.  Since L = {t, t2, x4tlt2, x4t, t2, x~x~t~t2} is the unique class of size 4 

in the characteristic subgroup B, L must be a conjugacy class in G.  The action of 

G on L defines a homomorphism from G to S ( L ) ~  $4. Since H lies in ~ ( G ) ,  

it follows that the image of H under this homomorphism is of order 1 or 2. This 

is a contradiction, since H is transitive on the four elements of L.  Indeed the 

action of H on L is generated by xl and x2, and is isomorphic to (?2 x C2. 

Therefore,  P4 x / ' 4  is not an FNE group. 

Next let H = (x,, y~, Zl, X2, y2, Z2) ~ (X,, y~, zl) • (x2, y2, Z2) -'~ R x R .  The ac- 

tion of H on the set of 63 involutions in H produces three conjugacy classes of 

size 1, twelve of size 2, and nine of size 4. Suppose H is an FN subgroup of a 

2-group G.  Since there is an odd number  of involution classes of size 4 in H ,  the 

action of G must stabilize (set-wise) at least one of these classes. Again we have 

a homomorphism from G to $4, under which H must have an image of order  1 

or 2. But the action of H must be transitive on the fixed conjugacy class of size 4. 

It follows that R • R is not a 2-FNE group. Note that we have not shown that 

R • R is not an FNE group. Indeed [ A u t ( R  • R) I  is divisable by 9, and 

Aut (R x R )  is transitive on the 9 involution classes of size 4 in R x R.  

At this point we are also able to present a short proof  that U (N  of Theorem 3 

in [6]) is not an FNE group. U contains four copies of (?4, namely K , =  

(x~), K2 = (x~x~),  K3 = (X2)., K4 = (x~x~). Suppose U is an FN subgroup of a 

group G.  The action of G stabilizes (set-wise) the family {K,} of copies of (?4 in 

U. This determines the  homomorphism from G to $4. In this case the action of 

U on {K,} is not transitive. However ,  this action is still of order  4, since 

qbx, =, (K~) (K2) (K3 ,  K4) and c~ 2 = (K~, K 2 ) ( K 3 ) ( K 4 ) .  Thus, U is not an FNE 

group. 

Now let H = (x~, yl, x2, y2) ~ (x~, y~) x (xz, y2) --" T • T. Our  approach here is 

to show that Y = ( y ~ , y g )  is a characteristic subgroup of H .  Since H / Y ~ -  

D8 • Ds ,  it will then follow from Theorems 1 and 6 that H is not a 2-FNE group. 

H contains 15 involutions. Let SO,  denote the set of involutions which 
"tX2 X 2 X2X 2~ SQ32 have exactly r square roots in H. SQ~6 = t ~, 2, t zs , = 
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2 2 2X2 2 2 2 2 {yl, y2, yl 2, xly2}, SQ64 ={y~y2}, and SQo consists of the remaining seven 

involutions. Each class SQ, is stabilized (set-wise) by A u t ( H ) .  Of the six 

products of pairs of elements from SQ32 the characteristic involution y~y~ occurs 

only once. It follows that the pair {y~,y~} giving that product must be a 

characteristic class. Hence, Y is a characteristic subgroup of H .  

Finally let H = (x~, x2, x3, x4) ~- (xl, x2) x (x3, x4) ~ U x U. Let Z~ = Z, (H)  = 

(H)  = (x~, x~, x~, x~)~ and Xi = Z~x~, 1-<_ i _-< 4. The conjugacy action of H on 

itself decomposes the set of 192 elements of order 4 into 32 classes of size 2 and 

32 classes of size 4. The union of the four Xi consists of the 32 classes of size 2. 

Therefore,  Aut (H)  stabilizes X - 1,3 X~, and the X~ are blocks of imprimitivity 

under the action of A u t ( H ) .  Now suppose w~ is in X~, 1 - < i - < 4 .  Then 

(w~, w2)~ (w3, w,)---U, while the other four pairs of w, generate subgroups 

isomorphic to C4x C4. Therefore,  A u t ( H )  also stabilizes the partition 

{{X1, X2}, {X3, X4}} of {X~}. We can now describe Aut (H)  in terms of its action 

on X.  A member 0/ of Aut (H)  is completely determined by the images under 0/ 

of the four generators xi, 1 -< i =< 4. For 1 =< i, j _-< 4, let 0/, be the automorphism 

which maps x~ into x~x~, and x, into itself, for r #  i. The set A = {c~,} is a basis for 

the automorphism subgroup E which is elementary abelian of order  2 t6. The 

action of Aut (H)  on {X~} is some subgroup of Ds,  since the partition above is 

fixed. Letting tr and r be the members of Aut (H)  defined by the permutations 

(xl, x3, x2, x4) and (Xl, X2)(X3)(X4), respectively, we have D = (tr, ~-)~ Ds.  The 

action of Aut (H)  on {X~ } is, in fact, all of Ds.  We see that Aut (H)  has order  219 , 

in particular Aut ( H ) =  (E, D ) ,  and Aut (H)/E ~ Ds. 
We now examine the action of A u t ( H )  on itself, in order to determine 

(Aut (H)) .  The members of A are fixed by E .  Therefore,  D determines the 

action of A u t ( H )  on A.  The action of tr and r on A is given by 

~btr = (0/11,0/33,0/22,0/44) (0/12,0/34,0/21,0/43) 

(0/14, 0/31, 0/23, 0/42) (0/13, 0/32, 0/24, 0/41), 

(~'r -~" (0/11, 0/22) (0/13, 0/23) (0/14, 0/24) (0/31, 0/32) 

(0/41, 0/42) (0/12) (0/21) (0/33) (0/34) (0/43) (0/44) �9 

It follows that A is decomposed into the three conjugacy classes 

A1 = {a . ,  a22, 0/33, 0/44}, 

A 2  = {0/12, 0/21, 0/34, 0/43}, 

A 3  = {0/13, 0/31, 0/14, 0/41, 0/23, 0/32, 0/24, 0/42} �9 
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Clearly Aut (H)  = (a,1, a~2, a,3, o-, z) ; indeed we shall show that this is a minimal 

generating set for Aut (H) .  Let  Ek be the subgroup of index 2 in (Ak) consisting 

of those members of (Ak) which are products of evenly many members of 

Ak, 1 _--< k =< 3. The group F = (E~, E2, E3) contains all commutators [8, a ] for 6 

in D and a in E .  Therefore,  q b ( A u t ( H ) ) =  (F, o'2), which is of index 32 in 

A u t ( H ) .  Hence, I n n ( G ) ~ 4 ~ ( A u t ( H ) ) ,  since ~bx,= a2, a~2, which is not a 

member of (F, o-2). It follows from Theorem 1 that H is not a 2-FNE group. 

Indeed, since Aut (H)  is itself a 2-group, we see that H is not an FNE group. 

4. The centralizer of the Frattini subgroup 

Bechtell raises the following question in the closing paragraph of [1]. Suppose 

F is the Frattini subgroup of a p-group G.  Must there exist a p-group G* such 

that dp(G*)-~F, and the centralizer of qb(G*) in G* lies in the center of 

qb(G*)? We answer the question negatively for the cases where F is cyclic or 

elementary abelian of order  p2. 

Suppose F -~ qb = qb (G*) ,  where G* is a p-group. Let  E be the centralizer of 

qb in G * .  If G* is abelian, then E = G * > q b .  We assume that G* is 

non-abelian. 

First suppose that qb is cyclic of order  p'~. We consider separately the cases p 

even and p odd. For p = 2, �9 is the subgroup of G* generated by all squares. 

Hence, x 2 is a generator of �9 for some x in G * .  It follows that E => (qb, x) > qb. 

For p odd, a p-Sylow subgroup 3 a of Aut (qb) is cyclic of order  p"-~.  Since G* is 

non-abelian, G * / ~  is elementary abelian of order  at least p2. On the other hand 

G*/E can be embedded in the cyclic group ~ .  Since E->  ~ ,  it follows that 

G*/E is of order  1 or p. Thus, E > q b .  

Now suppose that �9 is elementary abelian of order  pZ. The index of dO in G* is 

at least p=, since G* is non-abelian. For p even or odd, a p-Sylow subgroup of 

Aut (qb) is of order  p. Hence, G*/E is of order  1 or p, so E > ~ .  
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