ON **THE FRATTINI NORMAL EMBEDDABILITY OF PRODUCTS OF p-GROUPS**

BY

W. O. ALLTOP

ABSTRACT

If H_i is a finite non-abelian p-group with center of order p, for $1 \leq j \leq R$, then the direct product of the H_i does not occur as a normal subgroup contained in the Frattini subgroup of any finite p -group. If the Frattini subgroup Φ of a finite p-group G is cyclic or elementary abelian of order p^2 , then the centralizer of Φ in G properly contains Φ . Non-embeddability properties of products of groups of order 16 are established.

I. Introduction

Only finite groups will be considered. A group H will be called an FN subgroup (Frattini normal subgroup) of G provided H is normal in G and contained in the Frattini subgroup of G. An FNE group (Frattini normal embeddable group) is one which occurs as an FN subgroup of some group. Similarly a p -FNE group (p -Frattini normal embeddable group) is a group which occurs as an FN subgroup of some p -group. Hobby $[5]$ showed that a non-abelian p-group with cyclic center cannot occur as the Frattini subgroup of a p-group. Bechtell [1] developed fundamental theory relating the Frattini normal embeddability of a p-group G to properties of its $\mathcal X$ -invariant subgroups, for $\mathcal X$ a group of automorphisms of G . The fact that no non-abelian p-group with cyclic center is a p -FNE group is proved in [1], generalizing Hobby's result. A non-embeddability condition for p -groups was given by Hill and Wright [4], and a bound on the nilpotence class of FNE groups was established by Hill and Parker [3]. Hill [2] also places a bound on the exponent of a p -FNE group. Here we shall present another non-embeddability condition (Theorem 6) which yields groups which are not p -FNE groups, but which satisfy the class bound of [3] as well as the exponent bound of [2]. R. W. van der Waall [6] proves the non-embeddability of those groups of order p^4 which were not decided in [3]. In this paper we shall also show that for each of the seven non-2-FNE groups H of

Received January 21, 1975

order 16, $H \times H$ is not a 2-FNE group. The question raised by Bechtell in the closing paragraph of [1] is answered negatively for two families of abelian p-groups.

Our notation is standard. $\Phi(G)$ is the Frattini subgroup of G; Aut (G) and Inn (G) denote the full automorphism group and the inner automorphism group of G, respectively. The ascending central series of a p -group G is denoted by $1 = Z_0(G) \leq Z_1(G) \leq \cdots \leq Z_k(G) = G$, where k is the nilpotence class of G.

2. The basic theorems

The first five theorems regarding p-FNE groups follow from the results in [1], [2] and [3].

THEOREM 1. (Bechtell [1]). If G is a p-FNE group, $\mathcal P$ a p-Sylow subgroup of Aut (G) , and N is a \mathcal{P} -invariant subgroup of G, then N and G/N are also p-FNE *groups.*

THEOREM. 2. (Bechtell [1]). *If G is a p*-FNE *group*, then $\text{Inn}(G) \leq \Phi(\mathcal{P})$ for *any p-Sylow subgroup* $\mathcal P$ *of Aut (G).*

THEOREM 3. (Bechteil [1]). *If G is a non-abelian p-group with cyclic center, then G is not a* p-FNE *group.*

THEOREM 4. (Hill and Parker [3]). *If for a p-group G there exists i* \neq class (G) *such that* $(Z_i(G): Z_{i-1}(G)) = p$, then G is not an FNE group.

THEOREM 5. (Hill [2]). *If G is a* p-FNE *group of order p", class k, and exponent p', then p' divides* p^{n-k} *.*

Essential to the proof of Theorem 6, below, is the following

LEMMA. *Suppose A is an elementary abelian p-group of order* p^R *, generated by the set* $E = \{e_1, e_2, \dots, e_R\}$. The number of maximal subgroups of A which are *disjoint from E is* $(p-1)^{R-1}$.

PROOF. Let M be the family of maximal subgroups of A, and N the subfamily of M consisting of those maximal subgroups which are disjoint from E. A member M of M is determined by an integer sequence $s =$ (s_1, s_2, \dots, s_R) , $0 \le s_j \le p-1$, not all $s_j = 0$, in the following way. A group element $a=e_1^{\mu_1}e_2^{\mu_2} \cdots e_N^{\mu_N}$ is in M if and only if $s_1u_1+s_2u_2+\cdots+s_Nu_N=0$ (modulo p). Moreover, if some $s_i = 0$, then e_i is in M. Therefore, the sequence s determines a member N of N precisely when all s_i are non-zero. Such an N is

uniquely determined by the equivalent sequence $s' = (1, ts_2, ts_3, \dots, ts_R)$ of nonzero integers, where t is the multiplicative inverse of s_1 (modulo p). There are $(p-1)^{R-1}$ such sequences, so $|N| = (p-1)^{R-1}$.

Our general non-embeddability result is given in the following

THEOREM 6. *Suppose G is isomorphic to the direct product* $H_1 \times H_2 \times \cdots \times H_R$, where each H_i is a non-abelian p-group with center of order p. Then G is not a p-FNE *group.*

PROOF. We shall write G as the inner product $H_1H_2\cdots H_R$ of the subgroups H_i , with $Z_1(H_i) = \langle e_i \rangle$. Now $Z_1(G) = \langle e_1, \dots, e_R \rangle$ is an elementary abelian p-group of order p^R . As in the Lemma we let N consist of those members of M which contain no e_i , where M is the family of maximal subgroups of $Z_1(G)$. Clearly the action of Aut (G) on the family of subgroups of G fixes $Z_1(G)$, and decomposes M into orbits. Moreover, N is orbital under this action, that is, $\mathcal N$ is the union of orbits in $\mathcal M$. We prove this fact by showing that for every M in M, M is in N if and only if $Z_1(G/M) = Z_1(G)/M$.

Suppose N is in N, and $Z_1(G/N) = W/N$. Clearly $Z_1(G) \leq W$. If $Z_1(G)$ W, then W contains some element $w = w_1 w_2 \cdots w_k$, w_i in H_i , such that w is not in $Z_1(G)$. Thus, for some i, w_i is not in $Z_1(H_i)$. It follows that $[h_i, w_i] \neq 1$ for some h_i in H_i . However, $[h_i, w_i] = [h_i, w] \in N$, so $[h_i, w_i]$ is a non-identity element of $Z_1(H_i)$. Therefore, $Z_1(H_i) \leq N$, and in particular e_i is in N, a contradiction. We conclude that $Z_1(G/N) = Z_1(G)/N$ whenever N is in N.

Now suppose M is a maximal subgroup of $Z_1(G)$ which is not in N. M must contain some e_i , so $W \geq Z_2(H_i)$. Since H_i is non-abelian, we have $W \geq$ $Z_1(G) Z_2(H_i) > Z_1(G)$. We have shown that $Z_1(G/M) > Z_1(G)/M$ whenever M is not in $\mathcal N$.

N consists of precisely those maximal subgroups N of $Z_1(G)$ for which $Z_1(G/N)$ is of order p. Let $\mathcal P$ be a p-Sylow subgroup of Aut (G). From the lemma we know that $|\mathcal{N}| = (p-1)^{R-1} \neq 0 \pmod{p}$. Thus, there exists some N₁ in N which is P-invariant. If $R = 1$, then G is not a p-FNE group by Theorem 3. If $R > 1$, then G/N_1 is non-abelian with cyclic center. In this case G is not a p-FNE group by Theorems 1 and 3.

COROLLARY 1. *If* H_1, H_2, \dots, H_R are non-abelian p-groups such that for some *fixed i,* $(Z_i(H_j):Z_{i-1}(H_j))=p, 1 \leq j \leq R$, then $H_1 \times H_2 \times \cdots \times H_R$ is not a p-FNE *group,*

PROOF. $H_j^+ = H_j/Z_{i-1}(H_j)$ is non-abelian with cyclic center. Letting $G =$ $H_1 \times \cdots \times H_R$, we have $Z_{i-1}(G) = Z_{i-1}(H_1) \times \cdots \times Z_{i-1}(H_R)$. Therefore,

 $G/Z_{i-1}(G)$ is isomorphic to $H_1^* \times \cdots \times H_R^*$, and G is not a p-FNE group by Theorems 1 and 6.

In [3] a group of large class is defined to be a p-group of order $pⁿ$ and class greater than $n/2$, $n \ge 2$. A group of large class is not an FNE group ([3], theorem 1). It is not difficult to show that if G is a group of large class, then G is non-abelian and $(Z_i(G): Z_{i-1}(G)) = p$ for some *i*. Thus, we have

COROLLARY 2. *If G is a group of large class, then no finite product of copies of G is a* p-FNE *group.*

Suppose G is a group of large class, and let G_* be a finite product of at least two copies of G. G_* is not a p-FNE group even though G_* satisfies the exponent bound of Theorem 5, and G_* is not of large class.

3. Products of groups of order 2'

Every abelian p-group is a p-FNE group. Let C_m , D_m , and Q_m denote the cyclic, dihedral, and generalized quaternion groups of order $m = 2ⁿ$, respectively. $D_8 \times C_2$ and $Q_8 \times C_2$ both occur as Frattini subgroups of groups of order $2⁶$. In [3] and [6] it is shown that none of the seven remaining non-abelian groups of order $2⁴$ is a 2-FNE group. Here we discuss the embeddability of the product groups $H \times H$, where H is of order 2^4 . Since $H \times H$ is a 2-FNE group whenever H is, we consider only the seven groups which are not 2-FNE groups. In the following presentations of these seven groups, only non-identity commutators are given.

$$
P_r = \langle x, t : x^8 = t^2 = 1, [x, t] = x' \rangle \quad \text{for } r = 2, 4, 6,
$$

\n
$$
Q_{16} = \langle x, t : x^4 = t^2, t^4 = 1, [x, t] = x^6 \rangle,
$$

\n
$$
R = \langle x, y, z : x^4 = y^2 = z^2 = 1, [y, z] = x^2 \rangle,
$$

\n
$$
T = \langle x, y : x^4 = y^4 = 1, [x, y] = x^2 \rangle,
$$

\n
$$
U = \langle x_1, x_2 : x_1^4 = x_2^4 = (x_1^2 x_2^2)^2 = 1, [x_1, x_2] = x_1^2 x_2^2 \rangle.
$$

The groups $P_2, P_6 \cong D_{16}$, and Q_{16} are all of class 3. Hence, $P_2 \times P_2, P_6 \times P_6$, and $Q_{16} \times Q_{16}$ are non-2-FNE groups by Corollary 2.

We shall treat the four remaining groups separately. The groups R , T , and U are isomorphic to those of van der Waall's Theorems 1, 2 and 3, respectively, see $[6]$; but our presentation of U is different.

The following fact will be applied to $P_4 \times P_4$ and to $R \times R$: if μ is a homomorphism from a group G to the symmetric group $S₄$, then the image of $\Phi(G)$ under μ is of order 1 or 2. Let M be the kernel of μ , and $\Phi = \Phi(G)$. Since $\Phi(G/M) \geq \Phi(M/M)$, and $\Phi\mu$ is isomorphic to $\Phi(M/M)$, it follows that $\Phi\mu$ lies in the Frattini subgroup of $G\mu$. But the Frattini subgroup of each subgroup of S_4 has order 1 or 2. Therefore, $\Phi\mu$ has order 1 or 2.

Let $H = \langle x_1, t_1, x_2, t_2 \rangle \cong \langle x_1, t_1 \rangle \times \langle x_2, t_2 \rangle \cong P_4 \times P_4$, with the obvious relations holding among the generators. The fifteen involutions in H generate the characteristic subgroup $B = \langle x_1^4, t_1, x_2^4, t_2 \rangle$. The action of H on B produces four conjugacy classes of size 1, four of size 2, and one of size 4. Suppose H is an FN subgroup of G. Since $L = \{t_1 t_2, x_1^4 t_1 t_2, x_2^4 t_1 t_2, x_1^4 x_2^4 t_1 t_2\}$ is the unique class of size 4 in the characteristic subgroup B, L must be a conjugacy class in G . The action of G on L defines a homomorphism from G to $S(L) \cong S_4$. Since H lies in $\Phi(G)$, it follows that the image of H under this homomorphism is of order 1 or 2. This is a contradiction, since H is transitive on the four elements of L . Indeed the action of H on L is generated by x_1 and x_2 , and is isomorphic to $C_2 \times C_2$. Therefore, $P_4 \times P_4$ is not an FNE group.

Next let $H = \langle x_1, y_1, z_1, x_2, y_2, z_2 \rangle \cong \langle x_1, y_1, z_1 \rangle \times \langle x_2, y_2, z_2 \rangle \cong R \times R$. The action of H on the set of 63 involutions in H produces three conjugacy classes of size 1, twelve of size 2, and nine of size 4. Suppose H is an FN subgroup of a 2-group G. Since there is an odd number of involution classes of size 4 in H , the action of G must stabilize (set-wise) at least one of these classes. Again we have a homomorphism from G to $S₄$, under which H must have an image of order 1 or 2. But the action of H must be transitive on the fixed conjugacy class of size 4. It follows that $R \times R$ is not a 2-FNE group. Note that we have not shown that $R \times R$ is not an FNE group. Indeed $|Aut(R \times R)|$ is divisable by 9, and Aut $(R \times R)$ is transitive on the 9 involution classes of size 4 in $R \times R$.

At this point we are also able to present a short proof that $U(N)$ of Theorem 3 in [6]) is not an FNE group. U contains four copies of C_4 , namely $K_1 =$ $\langle x_1 \rangle$, $K_2 = \langle x_1 x_2^2 \rangle$, $K_3 = \langle x_2 \rangle$, $K_4 = \langle x_1^2 x_2 \rangle$. Suppose U is an FN subgroup of a group G. The action of G stabilizes (set-wise) the family $\{K_i\}$ of copies of C_4 in U. This determines the homomorphism from G to $S₄$. In this case the action of U on ${K_i}$ is not transitive. However, this action is still of order 4, since ϕ_{x_1} \neq $(K_1)(K_2)(K_3, K_4)$ and ϕ_{x_2} \neq $(K_1, K_2)(K_3)(K_4)$. Thus, U is not an FNE group.

Now let $H = \langle x_1, y_1, x_2, y_2 \rangle \cong \langle x_1, y_1 \rangle \times \langle x_2, y_2 \rangle \cong T \times T$. Our approach here is to show that $Y = \langle y_1^2, y_2^2 \rangle$ is a characteristic subgroup of H. Since $H/Y \cong$ $D_8 \times D_8$, it will then follow from Theorems 1 and 6 that H is not a 2-FNE group. H contains 15 involutions. Let *SO,* denote the set of involutions which have exactly *r* square roots in *H.* $SQ_{16} = \{x_1^2, x_2^2, x_1^2x_2^2\}$, $SQ_{32} =$

 $\{y_1^2, y_2^2, y_1^2, x_2^2, x_1^2, y_2^2\}$, *SQ₆₄* = $\{y_1^2, y_2^2\}$, and *SQ₀* consists of the remaining seven involutions. Each class SQ_r is stabilized (set-wise) by Aut (H) . Of the six products of pairs of elements from SO_{32} the characteristic involution $v_1^2v_2^2$ occurs only once. It follows that the pair $\{y_1^2, y_2^2\}$ giving that product must be a characteristic class. Hence, Y is a characteristic subgroup of H .

Finally let $H = \langle x_1, x_2, x_3, x_4 \rangle \cong \langle x_1, x_2 \rangle \times \langle x_3, x_4 \rangle \cong U \times U$. Let $Z_1 = Z_1(H) =$ $\Phi(H) = \langle x_1^2, x_2^2, x_3^2, x_4^2 \rangle$, and $X_i = Z_1x_i$, $1 \le i \le 4$. The conjugacy action of H on itself decomposes the set of 192 elements of order 4 into 32 classes of size 2 and 32 classes of size 4. The union of the four X_i consists of the 32 classes of size 2. Therefore, Aut (H) stabilizes $X = \bigcup X_{i}$ and the X_{i} are blocks of imprimitivity under the action of Aut(H). Now suppose w_i is in X_i , $1 \le i \le 4$. Then $\langle w_1, w_2 \rangle \cong \langle w_3, w_4 \rangle \cong U$, while the other four pairs of w_i generate subgroups isomorphic to $C_4 \times C_4$. Therefore, Aut(H) also stabilizes the partition $\{\{X_1, X_2\}, \{X_3, X_4\}\}\$ of $\{X_i\}$. We can now describe Aut (H) in terms of its action on X. A member α of Aut (H) is completely determined by the images under α of the four generators x_i , $1 \le i \le 4$. For $1 \le i, j \le 4$, let α_{ij} be the automorphism which maps x_i into $x_ix_j^2$, and x, into itself, for $r \neq i$. The set $A = \{\alpha_{ij}\}\$ is a basis for the automorphism subgroup E which is elementary abelian of order 2^{16} . The action of Aut (H) on $\{X_i\}$ is some subgroup of D_8 , since the partition above is fixed. Letting σ and τ be the members of Aut (H) defined by the permutations (x_1, x_3, x_2, x_4) and $(x_1, x_2)(x_3)(x_4)$, respectively, we have $D = \langle \sigma, \tau \rangle \cong D_8$. The action of Aut (H) on $\{X_i\}$ is, in fact, all of D_8 . We see that Aut (H) has order 2^{19} ; in particular $Aut(H) = \langle E, D \rangle$, and $Aut(H)/E \cong D_8$.

We now examine the action of $Aut(H)$ on itself, in order to determine Φ (Aut(H)). The members of A are fixed by E. Therefore, D determines the action of Aut(H) on A. The action of σ and τ on A is given by

$$
\phi_{\sigma} = (\alpha_{11}, \alpha_{33}, \alpha_{22}, \alpha_{44}) (\alpha_{12}, \alpha_{34}, \alpha_{21}, \alpha_{43})
$$

$$
(\alpha_{14}, \alpha_{31}, \alpha_{23}, \alpha_{42}) (\alpha_{13}, \alpha_{32}, \alpha_{24}, \alpha_{41}),
$$

$$
\phi_{\tau} = (\alpha_{11}, \alpha_{22}) (\alpha_{13}, \alpha_{23}) (\alpha_{14}, \alpha_{24}) (\alpha_{31}, \alpha_{32})
$$

$$
(\alpha_{41}, \alpha_{42}) (\alpha_{12}) (\alpha_{21}) (\alpha_{33}) (\alpha_{34}) (\alpha_{44}) .
$$

It follows that A is decomposed into the three conjugacy classes

$$
A_1 = {\alpha_{11}, \alpha_{22}, \alpha_{33}, \alpha_{44}},A_2 = {\alpha_{12}, \alpha_{21}, \alpha_{34}, \alpha_{43}},A_3 = {\alpha_{13}, \alpha_{31}, \alpha_{14}, \alpha_{41}, \alpha_{23}, \alpha_{32}, \alpha_{24}, \alpha_{42}}.
$$

Clearly Aut $(H) = \langle \alpha_{11}, \alpha_{12}, \alpha_{13}, \sigma, \tau \rangle$; indeed we shall show that this is a minimal generating set for Aut (H). Let E_k be the subgroup of index 2 in $\langle A_k \rangle$ consisting of those members of $\langle A_k \rangle$ which are products of evenly many members of A_k , $1 \le k \le 3$. The group $F = \langle E_1, E_2, E_3 \rangle$ contains all commutators $[\delta, \alpha]$ for δ in D and α in E. Therefore, $\Phi(\text{Aut}(H)) = \langle F, \sigma^2 \rangle$, which is of index 32 in Aut(H). Hence, $\text{Inn}(G) \not\leq \Phi(\text{Aut}(H))$, since $\phi_{x_1} = \alpha_{21} \alpha_{22}$, which is not a member of $\langle F, \sigma^2 \rangle$. It follows from Theorem 1 that H is not a 2-FNE group. Indeed, since Aut (H) is itself a 2-group, we see that H is not an FNE group.

4. The centralizer of the Frattini subgroup

Bechtell raises the following question in the closing paragraph of [1]. Suppose F is the Frattini subgroup of a p-group G. Must there exist a p-group G^* such that $\Phi(G^*) \cong F$, and the centralizer of $\Phi(G^*)$ in G^* lies in the center of $\Phi(G^*)$? We answer the question negatively for the cases where F is cyclic or elementary abelian of order p^2 .

Suppose $F \cong \Phi = \Phi(G^*)$, where G^* is a p-group. Let E be the centralizer of Φ in G^* . If G^* is abelian, then $E = G^* > \Phi$. We assume that G^* is non-abelian.

First suppose that Φ is cyclic of order p^{m} . We consider separately the cases p even and p odd. For $p = 2$, Φ is the subgroup of G^* generated by all squares. Hence, x^2 is a generator of Φ for some x in G^* . It follows that $E \ge \langle \Phi, x \rangle > \Phi$. For p odd, a p-Sylow subgroup $\mathcal P$ of Aut (Φ) is cyclic of order p^{m-1} . Since G^* is non-abelian, G^*/Φ is elementary abelian of order at least p^2 . On the other hand G^*/E can be embedded in the cyclic group \mathcal{P} . Since $E \geq \Phi$, it follows that G^*/E is of order 1 or p. Thus, $E > \Phi$.

Now suppose that Φ is elementary abelian of order p^2 . The index of Φ in G^* is at least p^2 , since G^* is non-abelian. For p even or odd, a p-Sylow subgroup of Aut (Φ) is of order p. Hence, G^*/E is of order 1 or p, so $E > \Phi$.

ACKNOWLEDGEMENT

The author is grateful to Professors Homer F. Bechtell and W. Mack Hill for several helpful communications regarding the material in this paper.

REFERENCES

- 1. H. Bechtell, *Frattini subgroups and ~-central groups,* Pacific J. Math. 18 (1966), 15-23.
- 2. W. M. Hill, *Frattini subgroups of p-closed and p-supersolvable groups,* to appear.

3. W. M. Hill, and D. B. Parker, The *nilpotence class of the Franini subgroup,* Israel J. Math. 15 (1973), 211-215.

4. W. M. Hill and C. R. B. Wright, *Normal subgroups contained in the Frattini subgroup,* Proc. Amer. Math. Soc. 35 (1972), 413-415.

5. C. Hobby, The *Frattini subgroup of a p-group,* Pacific J. Math. 10 (1960), 209-212.

6. R. W. van der Waall, *Certain normal subgroups of the Frattini subgroup of a finite group,* lndag. Math. 36 (1974), 382-386.

MICHELSON LABORATORIES

CHINA LAKE, CAL. 93555 U.S.A.